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Metabolomic Profiles Differentiate
Scleroderma-PAH From Idiopathic PAH
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BACKGROUND: The prognosis and therapeutic responses are worse for pulmonary arterial
hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pul-
monary arterial hypertension (IPAH). This discrepancy could be driven by divergence in
underlying metabolic determinants of disease.

RESEARCH QUESTION: Are circulating bioactive metabolites differentially altered in SSc-PAH
vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups?

STUDY DESIGN AND METHODS: Plasma biosamples from 400 patients with SSc-PAH and 1,082
patients with IPAH were included in the study. Another cohort of 100 patients with
scleroderma with no PH and 44 patients with scleroderma with PH was included for external
validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and
immune-inflammatory pathways, were assayed in plasma samples from independent dis-
covery and validation cohorts using liquid chromatography/high-resolution mass
spectrometry-based approaches. Regression analyses were used to identify metabolites that
exhibited differential levels between SSc-PAH and IPAH and associated with disease severity.

RESULTS: From hundreds of circulating bioactive lipid molecules, five metabolites were found
to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease
severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid
metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and
sex hormone metabolites.

INTERPRETATION: Patients with SSc-PAH are characterized by an unfavorable bioactive
metabolic profile that may explain the poor and limited response to therapy. These data
provide important metabolic insights into the molecular heterogeneity underlying differences
between subgroups of PAH. CHEST 2022; -(-):---
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Take-home Points

Study question: Are circulating bioactive metabo-
lites differentially altered in SSc-PAH vs IPAH, and
can this alteration explain clinical disparity between
these PAH subtypes?
Results: Using robust design and large sample size,
we identified and validated five metabolic plasma
biomarkers that differentiate SSc-PAH from IPAH
and associate with markers of disease severity. The
selected biomarkers were increased in SSc-PAH
compared vs SSC-alone, indicating these bio-
markers are related to PAH condition and not simply
due to the presence of scleroderma itself.
Interpretation: Patients with SSc-PAH are charac-
terized by an unfavorable bioactive metabolic profile
that may explain the poor and limited response to
therapy. These data provide important metabolic
insights into the pathogenesis of SSc-PAH molecular
heterogeneity of subgroups of PAH and may be used
for precision medicine approaches in PAH.
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Pulmonary arterial hypertension (PAH) is a debilitating
disease with enigmatic origins leading to elevated
pulmonary arterial pressures and pulmonary vascular
resistance (PVR). The most common subgroups are
idiopathic PAH (IPAH) and systemic sclerosis-
associated PAH (SSc-PAH).1 Systemic sclerosis is a
complex, immunologic disease, characterized by
autoimmunity, fibrosis of the skin and internal organs,
and small vessel vasculopathy.2 Importantly, PAH in
patients with SSc compared with patients with IPAH
have a threefold higher mortality risk.3-6 Furthermore,
patients with SSc-PAH stand out from those with other
types of PAH, given their impaired response to
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traditional therapies and worse overall clinical prognosis
despite exhibiting similar end-organ pathology and
often presenting with milder hemodynamic
impairment.3,7 Proposed factors explaining these
disparities include more pronounced inflammation,8

autoimmunity, the distinct nature of the underlying
vasculopathy,9 and differing abilities of the right
ventricle to adapt to the increased afterload.10

Metabolic dysregulation has been proposed as a key
mechanism by which IPAH and SSc-PAH differ and
could control such disparities.11,12 Interrogating such
metabolic dysregulation that also reflects contributory
immune-inflammatory and vasoactive pathway
activation is now possible by profiling circulating
levels of bioactive lipid metabolites.13-15 However, the
extent to which bioactive lipid profiles may specifically
differentiate between SSc-PAH and IPAH phenotypes
remains unknown. The ability to clarify the molecular
mechanisms underlying SSc-PAH, in particular, could
accelerate the development of more effective
approaches to managing and treating this especially
challenging PAH subtype.

Amid the broad diversity of metabolites that may be
studied in relation to disease pathogenesis, lipidomic
analytes include a subset of bioactive lipids that warrant
focused interrogation in relation to pulmonary vascular
disorders given the known, yet still understudied role of
bioactive lipids in modulating inflammation, immune
regulation, vascular function, and hemostasis.13-15 To
date, early studies of these bioactive metabolites in PAH
have revealed changes in key energetic pathways,
including abnormal lipid oxidation products, oxidative
stress, and lipid metabolism. Notwithstanding these
prior studies, limited data are available on how bioactive
lipid activity may differentiate between the
pathobiological processes underlying subgroups of PAH
and specifically SSc-PAH.

In the current study, we hypothesized that patients with
SSc-PAH exhibit unfavorable bioactive plasma
metabolomic derangements that are associated with
worse functional capacity compared with IPAH and
which could explain the rapid decline and disease
pathogenesis. The primary aim of this study was to
determine whether there is a bioactive lipid signature of
SSc-PAH. The secondary aim was to determine if this
signature is associated with markers of disease severity.
We applied liquid chromatography/high-resolution
mass spectrometry (LC/MS) to characterize the plasma
metabolic profiles from patients with IPAH, SSc-PAH,
and scleroderma-without PAH (SSc-no PH).
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Study Design and Methods
Cohorts and Sample Collection

We conducted primary analyses in a prespecified discovery cohort
followed by confirmatory analyses in a prespecified validation cohort,
in accordance with a study design that we have used in prior human
metabolomics studies and to evaluate the potential generalizability of
our findings.16 Cohorts 1 and 2 included patients with IPAH and
SSc-PAH and were obtained from the PAH Biobank resource.
Cohort 3 included patients with SSc-no PH and patients with SSc-
PAH obtained from Boston University. Details on study cohorts and
sample collection are included in the e-Appendix.

Metabolite Profiling

Bioactivemetabolite analysiswas performedonplasma samples by LC/MS
using aVanquishUPLCcoupled to a high-resolution, QExactiveOrbitrap
mass spectrometer (Thermo Fisher Scientific), as described elsewhere14,19

(details are provided in the e-Appendix). Metabolites identified as
xenobiotics or detected in < 20% of samples were excluded from the
analysis, leaving 690 well-quantified biological metabolites. Following
normalization, metabolite peaks were further compressed for multiple
adducts and in source fragments. Metabolites missing values were
imputed to the one-quarter of the lowest observed value of that
molecule. Normalized, aligned, filtered data sets were subsequently used
for statistical analyses, as described in the following section.

Statistical Analyses

Initial group comparisons between patients with SSc-PAH and IPAH,
and between those with SSc-no PH and SSc-PAH, were performed by
using the Student t test or the Mann-Whitney test for continuous
variables and the c2 test for categorical variables. Prior to all
analyses, metabolite values were natural logarithmically transformed,
as needed, and later standardized with mean ¼ 0 and SD ¼ 1 to
facilitate comparisons. Logistic regression analysis was used to
determine metabolites that were significantly different between SSc-
chestjournal.org
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PAH and IPAH (analysis I) in models adjusting for age, sex, BMI,
and potential confounders, including use of prostaglandin therapy,
corticosteroids, immunosuppression therapy, warfarin, or thyroid
hormone, as well as renal insufficiency and cirrhosis. Renal
insufficiency and cirrhosis were determined based on treating
physicians’ discretion. The selection of variables included for all
analyses was based on clinical expert identification of potentially
confounding factors. Variables for inclusion in multivariable-adjusted
analyses were also selected based on significant results observed in
the unadjusted analyses. To determine if the prioritized metabolites
were not driven by disease severity, 6-min walk distance (6MWD)
was included in the logistic regression model.

To determine significance, a Bonferroni-corrected P value threshold of
.05 divided by a conservative estimate of the total number of unique
small molecules (ie, P < 10–4) was used. False discovery rate using
the Benjamini-Hochberg method was also calculated, and
metabolites not meeting a q value threshold of < 0.05 were
excluded. Receiver-operating characteristic curve was used to assess
discriminating value of metabolites against diagnosis. To determine
if the significant metabolites were related to scleroderma disease or
scleroderma-PAH, Student t test analysis was performed between the
significant metabolites in SSc-no PH and SSc-PAH in Cohort 3.
Logistic regression analysis was performed between the metabolites
meeting significance threshold (P < .05) in the pairwise analysis.
Regression analysis was performed between the significant
metabolites from analysis I and markers of disease severity in SSc-
PAH, IPAH, and SSc-PAH combined. Linear regression analysis was
used between the selected metabolites and 6MWD, right atrial
pressure, PVR, cardiac index, and stroke volume index (SVI), and
logistic regression analysis was used between the selected metabolites
and World Health Organization functional class (WHO FC; analysis
II). All analyses were performed in models adjusting for age, sex,
and BMI. Statistical analysis was performed with R with RStudio.28
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Results
Baseline demographic, clinical, and hemodynamic
characteristics and medications for patients enrolled in
the study are summarized in Table 1, Table 2, and e-
Table 1. At the time of enrollment, patients with SSc-
PAH had significantly lower mean right atrial pressure
and PVR than IPAH counterparts. In Cohort 3, patients
with SSc-no PH were younger and had less disease
duration compared with patients with SSc-PAH. There
was no difference in immunosuppression medication
usage between the groups in Cohort 3.

Metabolites Differentiating Between SSc-PAH and
IPAH

The study overview is described in Figure 1. Circulating
levels of nine bioactive lipid metabolites distinguished
SSc-PAH from IPAH at a “metabolome-wide” statistical
threshold of P < 10–4 (e-Table 2, Table 3) after adjusting
for age, sex, and BMI. Further adjustment for potential
confounders, including use of prostaglandin therapy,
corticosteroids, immunosuppression therapy, warfarin,
or thyroid hormone, as well as renal insufficiency and
cirrhosis, did not significantly affect the analyses for all
of the metabolites but one. The directionality of
association for a novel eicosanoid remained the same,
although the significance of the association was
attenuated after adjustment for warfarin use. After
adjusting for 6MWD in the model, all nine metabolites
remained significant. All the metabolites were able to
distinguish SSc-PAH from IPAH in an independent
validation cohort. These metabolites included alterations
in fatty acid oxidation, eicosanoid metabolism, and sex
hormones. (Fig 2). In combination, these metabolites
distinguished patients with SSc-PAH and IPAH at an
area under the curve of 85.5% of accuracy (95% CI, 82.8-
88.3) (Fig 3).

Metabolites Distinguishing SSc-PAH From
Scleroderma Disease

To determine if the selected metabolites were related to
SSc per se, metabolomics analysis was performed
comparing Cohort 3 (consisting of SSc-no PH) vs SSc-
3
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TABLE 1 ] Patient Demographic Characteristics and Clinical Features of Patients With IPAH and SSc-PAH Q19

Characteristic

Discovery Cohort (Cohort 1) Validation Cohort (Cohort 2)

IPAH (n ¼ 864) SSc-PAH (n ¼ 310) P Value IPAH (n ¼ 213) SSc-PAH (n ¼ 91) P Value

Female 663 (76.7) 267 (86.1) .001 166 (77.9) 82 (90.1) .019

Age, y 51.90 � 18.47 64.10 � 11.03 < .001 53.22 � 14.95 63.74 � 10.29 < .001

BMI, kg/m2 30.36 � 19.14) 28.24 � 11.40 .068 30.78 � 9.23 27.32 � 8.17 .002

Renal insufficiency 32 (3.7) 28 (9.0) < .001 11 (5.2) 7 (7.7) .555

Cirrhosis 13 (1.5) 5 (1.6) 1 2 (0.9) 4 (4.4) .125

FunctionalQ20 class .093 .51

I 46 (7.1) 14 (5.7) 5 (3.9) 0 (0.0)

II 182 (28.3) 81 (33.1) 42 (32.6) 20 (36.4)

III 345 (53.6) 135 (55.1) 72 (55.8) 31 (56.4)

IV 71 (11.0) 15 (6.1) 10 (7.8) 4 (7.3)

6MWD, m 353.91 � 138.36 312.44 � 118.06 .001 348.80 � 125.44 312.30 � 130.54 .121

mRAP, mm Hg 9.16 � 5.85 8.33 � 5.06 .028 8.38 � 4.99 7.48 � 4.94 .154

mPAP, mm Hg 50.82 � 14.25 43.30 � 11.32 < .001 52.73 � 13.8 41.53 � 9.47 < .001

PAWP, mm Hg 9.58 � 3.24 9.38 � 3.35 .36 9 � 3.52 8.38 � 3.39 .15

PVR, Woods units 10.74 � 6.84 8.50 � 5.13 < .001 12.18 � 6.38 8.48 � 4.06 < .001

Cardiac index,
L/min/m

2.48 �1 2.60 � 0.78 .08 2.26 � 0.83 2.49 � 0.74 .03

SVI, mL/m2 32.65 � 13.88 33.01 � 11.70 .77 29.64 � 12.15 32.72 � 10.48 .17

Prostanoid use 415 (48.0) 130 (41.9) .075 83 (39.0) 25 (27.5) .074

Data are expressed as No. (%) or mean � SD. 6MWD ¼ 6-min walk distance; IPAH¼ idiopathic pulmonary arterial hypertension; mPAP ¼mean pulmonary
artery pressure; mRAP ¼ mean right atrial pressure; PAWP ¼ pulmonary artery wedge pressure; PVR ¼ pulmonary vascular resistance; SSc-PAH ¼
systemic sclerosis-associated pulmonary arterial hypertension; SVI ¼ stroke volume index.
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PAH. When considering the plasma metabolite
signature differentiating between SSc-PAH and IPAH,
levels of fatty acyl esters of hydroxy fatty acid (FAHFA),
nervonic acid, 17b estradiol, prostaglandin F2a (PGF2a),
and a novel eicosanoid were significantly higher in SSc-
PAH vs SSc-no PH (Fig 4, Table 4). Levels of lignoceric
acid and leukotriene B4 (LTB4) were significantly
elevated in SSc-no PH compared with SSc-PAH. The
difference in lignoceric acid and LTB4 attenuated after
adjusting for disease duration (e-Fig 1, e-Table 3).

Associations of SSc-PAH Differentiating Metabolites
With Markers of Disease Severity

To determine if certain distinguishing metabolites
associate with worse functional capacity and markers of
disease severity in PAH, we next performed association
of the five metabolite biomarkers with 6MWD and
WHO FC. Only 58 patients (18 of them had SSc-PAH)
had a right heart catheterization within 14 days of
sample collection, and their hemodynamics data were
included in the analysis with hemodynamic measures of
disease severity: right atrial pressure, PVR, cardiac index,
and SVI. As shown in e-Figure 1 and Figure 5, three of
4 Original Research
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the metabolites were associated with at least one marker
of disease severity in SSc-PAH, and all five metabolites
were associated with at least one marker of disease
severity when combining SSc-PAH and IPAH (P < .05).
Two metabolites (nervonic acid and 17b estradiol)
associated with decreased 6MWD in SSc-PAH, and four
of the five metabolites associated with decreased 6MWD
in combined SSc-PAH and IPAH (nervonic acid, 17b
estradiol, novel eicosanoid, and PGF2a) and were
significantly higher in SSc-PAH. Intriguingly, 17b
estradiol associated with lower cardiac index and SVI in
SSc-PAH but not in IPAH. Four metabolites (FAHFA,
17b estradiol, novel eicosanoid, and PGF2a) associated
with lower cardiac index in combined SSc-PAH and
IPAH (e-Table 4).

Discussion
In this study, we identified significant bioactive lipid
alterations that distinguish patients with SSc-PAH from
those with IPAH. We assayed hundreds of circulating
bioactive lipid metabolites using LC/MS approaches in
400 patients with SSc-PAH and 1,082 patients with
IPAH in independent discovery and validation cohorts.
[ -#- CHE ST - 2 0 2 2 ]
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TABLE 2 ] Demographic Characteristics of Patients With SSc-No PH and SSc-PAH (Cohort 3)

Characteristic SSc-no PH (n ¼ 100) SSc-PAH (n ¼ 44) P Value

Age, y 53.35 � 14.86 59.05 � 11.31 .025

Female 87 (87.0) 38 (86.4) 1 Q21

Disease duration, y 7.65 � 6.62 11.69 � 8.33 .01

BMI, kg/m2 27.44 � 5.67 29.21 � 7.22 .123

Immunosuppression therapy 21 (21.0) 8 (18.2) .871

Functional class < .001

I 45 (71.4) 5 (16.7)

II 17 (27.0) 14 (46.7)

III 1 (1.6) 10 (33.3)

IV 0 1 (3.3)

FVC, % predicted 87.82 � 21.61 76.55 � 19.72 .009

FEV1, % predicted 85.60 � 20.85 71.17 � 19.47 .001

DLCO, % predicted 66.63 � 20.93 41.44 � 20.62 < .001

RVSP, mm Hg 27.97 � 7.49 62.32 � 22.78 < .001

mRAP, mm Hg 3.17 � 3.19 5.88 � 4.69 .18

PAWP, mm Hg 8.33 � 3.61 10.12 � 5.61 .455

mPAP, mm Hg 23.29 � 9.05 36.86 � 13.94 .017

Cardiac index, L/min/m 2.82 � 0.48 2.82 � 0.70 .982

PVR, Woods units 3.2 � 2.4 6.2 � 5.4 .195

Data are expressed as mean � SD or No. (%). DLCO ¼ diffusing capacity of the lung for carbon monoxide; mPAP ¼ mean pulmonary artery pressure;
mRAP ¼ mean right atrial pressure; PAWP ¼ pulmonary artery wedge pressure; PVR ¼ pulmonary vascular resistance; RVSP ¼ right ventricular systolic
pressure; SSc-no PH ¼ scleroderma-without pulmonary arterial hypertension; SSc-PAH ¼ systemic sclerosis-associated pulmonary arterial hypertension.
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We observed a set of bioactive metabolite biomarkers
that independently differentiated SSc-PAH from IPAH
after adjusting for multiple potential confounders. In
combination, these metabolites were able to distinguish
SSc-PAH from IPAH with a high degree of accuracy
(area under the curve, 85.5%; 95% CI, 82.8-88.3).
Importantly, levels of the differentiating metabolites
were found to be altered in an independent cohort of
SSc-PAH compared with SSc-no PH, and the majority of
these analytes were also associated with at least one
marker of disease severity. Taken together, these
findings provide molecular insights into the
heterogeneity that is consistently seen across PAH
subgroups, and they offer viable directions for further
investigation of mechanisms underlying the worse
prognosis and response to therapy seen in patients with
SSc-PAH.

Although there is an advancing appreciation that PAH is
a heterogeneous disease with clinical differences within
subgroups, still missing is a comprehensive catalogue of
molecular and metabolic profiles underlying the clinical
manifestations of PAH subgroup. Namely, plasma
chestjournal.org
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metabolomic profiles have been reported in PAH,29-32

and a few reports have examined circulating metabolites
that may point to potential metabolic pathways altered
in SSc (with or without PAH).33,34 These studies
indicated that distinct metabolic signatures exist
between PAH and healthy or disease control subjects. In
the largest of these studies, Rhodes et al29 performed a
comprehensive metabolomics analysis in patients with
IPAH and control subjects. The investigators identified
that the measurements of a combination of seven
circulating metabolites can be used to distinguish PAH
from control subjects. Interestingly, alterations in fatty
acids, steroids, and RNA-based nucleoside levels
correlated with clinical outcomes, and correction of
several metabolites over time was associated with better
clinical outcome. Our study adds substantially to this
existing compendium of metabolites by making
comparisons between subgroups of PAH and focusing
on a putative difference between these subgroups in
metabolic dysregulation. Notably, a prior small study of
eight patients with SSc without PAH and 10 patients
with SSc-PAH using nuclear MRI identified an increase
in glycolysis and altered fatty acid profiles in SSc-PAH.29
5

550
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Figure 1 – Study overview. Summary of study workflow and data
analysis plan. 6MWT ¼ 6-min walk test; IPAH ¼ idiopathic pulmonary
arterial hypertension; SSc-PAH ¼ systemic sclerosis-associated pulmo-
nary arterial hypertension; SSc-no PH ¼ scleroderma-without pulmo-
nary arterial hypertension.Q23 Q24
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However, none of these studies offered a broad plasma
bioactive metabolite analysis with the intent of a
comparison across independent cohorts of IPAH vs SSc-
PAH and SSc-PAH vs SSc-no PH. Specific molecular
signatures, perhaps indicating immune-inflammatory or
vasoactive targets, could be instrumental in guiding the
development and tailoring of more effective
management strategies. Notably, none of the top
differentiating metabolites in our study was measured in
prior published work, potentially related to technical
differences (use of NMR vs LC/MS) and smaller sample
sizes of the previous studies. Thus, our findings now set
the stage for precision medicine practices in PAH
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Figure 2 – Bioactive metabolite analysis of SSc-PAH vs IPAH. A, Volcano plot of metabolites distinguishing SSc-PAH from IPAH in the discovery and
validation cohorts. ORs and P values are derived from multivariable regression analyses. Red dots indicate metabolites significant in both discovery and
validation cohorts; black dots indicate metabolites significant only in the discovery cohort; and gray dots indicate all metabolites measured in the
discovery and validation cohorts. B, Waterfall plot of significant metabolites distinguishing SSc-PAH from IPAH. Values are plotted as log2 fold change
of metabolite levels in SSc-PAH relative to IPAH. FAHFA ¼ fatty acyl esters of hydroxy fatty acid; Eic ¼ eicosanoid; IPAH ¼ idiopathic pulmonary
arterial hypertension; LTB4 ¼ leukotriene B4; PGF2a ¼ prostaglandin F2a; SSc-PAH ¼ systemic sclerosis-associated pulmonary arterial hypertension;
SSc-no PH ¼ scleroderma-without pulmonary arterial hypertension. Q25
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clinical trial development and management based on
these plasma metabolomic signatures.

Compared with IPAH, patients with SSc-PAH in the
current study displayed differentially elevated metabolites
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Figure 3 – Receiver-operating characteristic curves show the perfor-
mance of the model in distinguishing idiopathic pulmonary arterial
hypertension from systemic sclerosis-associated pulmonary arterial hy-
pertension using nine metabolites. The blue curve represents the training
set, and the red curve represents the testing set. AUC ¼ area under the
curve.
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of fatty acid oxidation, eicosanoid metabolism, and sex
hormones (Fig 2, Table 3). Most of these elevations were
persistent when comparing patients with SSc-PAH
vs those with SSc-no PH (Fig 4, Table 4), indicating that
these alterations are specific to the condition of SSc-PAH
and not the presence of SSc alone. Future work can be
envisioned to determine if such markers may define early
stages of PAH in asymptomatic patients with SSc. Of
particular interest, FAHFAs are a newly discovered class
of complex lipid species with known antiinflammatory
activities in cancer.35 Eicosanoids are small bioactive lipid
species that serve as upstream mediators of inflammation
and are known to modulate endothelial cell function as
well as exert vasoactive properties.36 Certain eicosanoids
are known to be central mechanistic triggers and drivers
of PAH,37 but the full range of eicosanoid pathobiology in
PAH is not defined. Until recently, sensitive methods for
comprehensively detecting and quantifying eicosanoids in
large sample sizes have been lacking. In this study, newly
developed methods were deployed to more
comprehensively measure eicosanoid metabolites14 that
can now distinguish SSc-PAH compared with IPAH.
Future work should be prioritized to determine how such
novel metabolites may promote and potentially relate to
the biology of canonical eicosanoids in both PAH
subtypes.

Intriguingly, nervonic acid was associated with worse
functional capacity (both higher WHO FC and lower
7
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Figure 4 – Metabolite levels in SSc-no PH vs SSc-PAH. Violin plots of nervonic acid, lignoceric acid, FHAFA, 17b estradiol, novel eicosanoid, PGF2a,
and LTB4 levels in SSc-no PH vs SSc-PAH. All displayed metabolites had a P value < .05. FAHFA ¼ fatty acyl esters of hydroxy fatty acid; LTB4 ¼
leukotriene B4; PGF2a ¼ prostaglandin F2a; SSc-PAH ¼ systemic sclerosis-associated pulmonary arterial hypertension; SSc-no PH ¼ scleroderma-
without pulmonary arterial hypertension.
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6MWD) and higher right atrial pressure in SSc-PAH,
despite the fact that patients with SSc-PAH displayed
milder hemodynamic profiles. Previous reports have
shown that patients with SSc-PAH have depressed rest
and reserve right ventricular contractility.38

Correspondingly, nervonic acid is a long-chain
8 Original Research

FLA 5.6.0 DTD � CHEST5258_proof � 14 O
monounsaturated omega-9 fatty acid involved in energy
metabolism, antioxidant reactions, and apoptosis.39 It
also modulates cardiac function and has been positively
associated with greater congestive heart failure, poor
performance, and increased cardiovascular mortality.40

In our cohort, nervonic acid was not associated with
[ -#- CHE ST - 2 0 2 2 ]
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TABLE 4 ] Comparisons Between Metabolite Levels in SSc-PAH and SSc-no PH

Metabolite FC OR CI-L CI-U P Value FDR

Lignoceric acid 0.8 0.7 0.5 1.0 5E-02 0.05

Nervonic acid 1.2 2 1.3 3.0 2E-03 0.01

FAHFA 5 2.8 1.7 4.5 5E-05 <0.001

17b estradiol 1.4 1.6 1.1 2.8 2E-02 0.03

Novel eicosanoid 1.3 1.9 1.2 2.9 4E-03 0.01

PGF2a 1.3 1.6 1.0 2.4 3E-02 0.05

LTB4 0.6 0.7 0.5 1.0 5E-02 0.05

P values originated from multivariable logistic regression analysis. Fold change (FC) reflects the mean average of metabolite level in systemic sclerosis-
associated pulmonary arterial hypertension (SSc-PAH) over scleroderma-without pulmonary arterial hypertension (SSc-no PH). ORs originated from
multivariable logistic regression analysis. CI-L ¼ lower CI; CI-U ¼ upper CI; FAHFA ¼ fatty acyl esters of hydroxy fatty acid; FDR ¼ false discovery rate;
LTB4 ¼ leukotriene B4; PGF2a ¼ prostaglandin F2a.
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cardiac index or SVI; however, our hemodynamic
analysis was limited by sample size. Future work should
be prioritized to define any causative links of nervonic
acid in cardiac impairment in SSc-PAH.

Higher levels of 17b estradiol and PGF2a were also
associated with worse functional capacity in SSc-PAH.
In general, 17b estradiol is considered cardioprotective,
but 17b estradiol is highly pleiotropic with respect to
immune function, displaying proinflammatory and
antiinflammatory activity under different
conditions.41,42 Intriguingly, 17b estradiol associated
–50 –25 0

6MWD Functional Clas

PGF2α

Novel Eic

17β Estradiol

FAHFA

Nervonic Acid

0 1 2
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Figure 5 – Forest plots of metabolites association with markers of disease sever
metabolites and 6MWD, functional class, right atrial pressure, and Fick car
analysis for 6MWD, right atrial pressure, and cardiac index, and from logis
distance; FAHFA ¼ fatty acyl esters of hydroxy fatty acid; Eic ¼ eicosanoid
taglandin F2a; SSc-PAH ¼ systemic sclerosis-associated pulmonary arterial h

chestjournal.org
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with lower cardiac index and SVI in SSc-PAH but
associated with higher SVI in IPAH. Future studies
should be geared toward defining the balance of
protective vs proinflammatory effects in SSc-PAH in the
absence of normal immune regulation. PGF2a is a potent
pulmonary vasoconstrictor43 and marker of
inflammation and oxidative stress.44 Consistent with our
findings, levels of PGF2a are known to increase with
both acute45 and chronic inflammation, including in
connective tissue disease.46 In animal models, PGF2a
promoted cardiomyocyte hypertrophy and fibrosis,47

suggesting the potential relevance of right ventricular
Effect size

s Right Atrial Pressure Cardiac Index

–2.5 0.0 2.5 5.0 –2 0–1 1 2

c-PAH SSc-PAH and IPAH

ity. Forest plots display the relative effect sizes and 95% CIs of significant
diac index. P values and effect sizes were derived from linear regression
tic regression analysis for functional class. 6MWD ¼ 6-minute walk
; IPAH ¼ idiopathic pulmonary arterial hypertension; PGF2a ¼ pros-
ypertension.
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pathobiology with PGF2a as with nervonic acid. In our
study, PGF2a associated with lower cardiac index and
SVI and higher PVR in SSc-PAH and IPAH combined.

It is possible that a number of the metabolic alterations
associated with SSc-PAH in the current study were driven
by SSc per se rather than PAH. For example, levels of
lignoceric acid and LTB4 were significantly elevated in
SSc-PAH compared with IPAH, but levels were more
elevated in patients with SSc-no PH compared with those
with SSc-PAH. Both biomarkers have been implicated in
inflammation and autoimmune processes, with levels
correlating with the degree of inflammation.48-50 LTB4
also induces pulmonary vascular inflammation,
endothelial cell apoptosis, and vascular smooth muscle
cell proliferation.50 Levels of LTB4 were significantly
elevated in BAL fluid from patients with SSc-related
lung disease compared with SSc patients without SSc-
related lung disease and healthy control subjects.51

Interestingly, lignoceric acid was associated with a
decreased 6MWD, and both lignoceric acid and LTB4
were associated with lower cardiac index and higher
PVR in SSc-PAH (e-Fig 2, e-Table 3), suggesting a role
of these proinflammatory biomarkers in vascular
remodeling and perhaps impaired cardiac function.
Studies have shown that cardiac involvement in SSc is
not only linked to PAH but that SSc may have a direct
impact on the right ventricular structure and
function51; however, it is often difficult to differentiate
between primary heart involvement and secondary
impairment in the setting of PAH. More importantly,
these changes may remain silent for a long time and
are thus frequently underdiagnosed.

In the current cohort, patients with SSc-PAH had a
longer disease duration compared with patients with
SSc-no PH; in fact, the differences in lignoceric acid
and LTB4 levels attenuated after adjusting for disease
duration (data not shown). This molecular alteration
could represent an opportunity for early detection of
either PAH or cardiac involvement in patients with
scleroderma and will need further prospective
investigations. Another explanation is that patients
with SSc-no PH had advanced SSc and a higher level
of inflammation, explaining higher levels of these
proinflammatory biomarkers. Unfortunately,
information on the degree of inflammation was not
available in this cohort. Nonetheless, our findings
shed light on possible molecular mechanisms of how
SSc contributes to accelerated vascular remodeling
and impaired cardiac function and could potentially
10 Original Research
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have therapeutic implications. Inhibition of LTB4 by
bestatin (leukotriene A4 hydrolase inhibitor)
prevented and reversed severe PAH in animal
models,52 but a large, randomized trial of bestatin in
severe PAH did not suggest drug benefit.53 Our
results support a hypothesis that patients with
SSc-PAH displaying high LTB4 levels may respond
more robustly to bestatin.

The current study has limitations. Importantly, given
the study design, adjustment for all potential
confounders between IPAH and SSc-PAH was a
challenge. Second, although metabolite markers were
found to distinguish SSc-PAH from IPAH and
independently associate with markers of disease
severity, exploration of a clear causal relationship for the
role of these metabolic pathways in SSc-PAH is
pending. We acknowledge that 6MWD could be
affected by other factors such as loss of muscle tone or
arthritis, especially in patients with scleroderma.
However, we did not have information available to
adjust for, and to confirm our hypothesis, we performed
regression analysis with the selected metabolites and
markers of disease severity. Because a significant
number of right heart catheterizations were performed
prior to sample collection, which limited our statistical
power specifically in the SSc-PAH group, we also
performed the same analysis in IPAH patients only and
combined IPAH and SSc-PAH. Even though most of
our selected metabolites were not significantly
associated with hemodynamic markers of right
ventricular dysfunction in SSc-PAH only, they became
significant when combining both SSc-PAH and IPAH,
and we assume that this is due to underpowering in the
SSc-PAH group. Future studies with more detailed
phenotyping of patients with scleroderma will be
needed to validate our findings. Despite these
acknowledged limitations, our findings provide more
comprehensive molecular insight on the metabolic
alterations present in SSc-PAH and their potential role
in disease pathobiology.

Interpretation
SSc-PAH is characterized by significant metabolomic
alterations that associate with markers of disease
severity, which may explain accelerated disease course
and contribute to poor response to therapy compared
with IPAH. Our observations now offer a more
comprehensive metabolic guide to much-needed
diagnostic, prognostic, and therapeutic strategies of
precision medicine in patients with SSc-PAH.
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